
VMware silently adds native USB 3.0 support to ESXi
5.5
by Andreas Peetz at Monday, November 03, 2014

The October 2014 patch of ESXi 5.5 already got a lot of attention,
because it introduced additional Transparent Page Sharing (TPS)
management capabilities to prepare for TPS being disabled by
default in upcoming ESXi releases. And William Lam pointed out
that this patch enables support for the Apple Mac Pro 6,1 ... but
there is even more goodness in this patch!

When adding the associated Image Profiles to the VibMatrix I
noticed that this bundle includes a new package named xhci-xhci.
The related KB2087362 article only includes the standard
disclaimer, but no information about what this really means: xHCI
stands for Extensible Host Controller Interface, a USB standard that
supports USB 3.0 (or SuperSpeed) controllers and devices.

That means with the latest ESXi 5.5 patch you are - for the first time
- able to utilize USB Passthrough with USB 3.0 devices!

Here are the steps to get this working:

1. Install the ESXi 5.5 October 2014 patch

With an Internet connected standalone ESXi host you can use the
well known esxcli method to patch the host directly from the
VMware Online Depot:
Enable SSH access on your host, log in to it (e.g. using putty) and
run the following commands:
1	 #	 open	 firewall	 for	 outgoing	 http	 requests:	
2	 esxcli	 network	 firewall	 ruleset	 set	 -‐e	 true	 -‐r	 httpClient	
3	 #	 Update	 using	 the	 ESXi	 5.5	 p03	 Imageprofile	 from	 the	 	

VMware	 Online	 depot	

4	 esxcli	 software	 profile	 update	 -‐d	
https://hostupdate.vmware.com/software/VUM/PRODUCTION/	
main/vmw-‐depot-‐index.xml	 -‐p	 	
ESXi-‐5.5.0-‐20141004001-‐standard	

5	 #	 Reboot	 your	 host	
6	 reboot	
If you do not have Internet access with your ESXi host then you
need to download the Patch Offline Bundle from MyVMware for
Offline patching.

Please note: This patch bundle also includes the ESXi 5.5 Update 2
that was released earlier, because ESXi patches are cumulative.

2. Load the xhci VMkernel module

After you have booted your newly patched ESXi host you can check
with the shell command lsusb what USB devices were detected.
You will probably not see any USB 3.0 devices then, because the
necessary xhci driver module is not loaded automatically (at least
not on my whitebox that uses an add-on Renesas chip based
controller).

Go and load the module with the command
vmkload_mod	
xhci	
in an ESXi shell. After that lsusb should also list your USB 3.0
device(s).

If you want to make use of your USB 3.0 devices on a regular basis
then I recommend adding this command to the file
/etc/rc.local.d/local.sh. Then it will always be automatically executed
at boot time.

3. Configure USB passthrough

The method to use a host-connected USB device with a VM is
called USB passthrough, and the steps to configure it are described
in the vSphere docs. Here is a short summary:

In the hardware properties of the VM add a USB controller. If you
want to use a USB 3.0 device at full speed then you need to add a

controller of type xHCI. Otherwise the device will only work with
USB 2.0 speed:

Please note: This will only work with Guest Operating Systems that
include a generic USB 3.0/xHCI driver, and that is any Linux (with
kernel version 2.6.38 and later), Microsoft Windows 8/8.1 and
Server 2012 (R2), but not Windows 7 (resp. Server 2008 R2) or
earlier versions of Windows!

The next step is to add the host-connected USB device to the VM.
Add a USB device in its hardware properties and map it to the host
device by picking the right one from the presented list:

You can now power on the VM and use the USB device with it!

Test results

I tested the performance of USB 3.0 passthrough on my whitebox
ESXi system with a Windows Server 2012 R2 VM using an external
3TB hard disk and a 64GB thumb drive. I used the free ATTO Disk
Benchmark tool to measure read and write throughput with various
block sizes and got the following results:
• CN Memory 3TB External hard disk (using an ASMedia USB to

SATA converter): max. 90 MB/s write, max. 140 MB/s read
• ADATA 64GB flash drive: max. 45 MB/s write, max. 90 MB/s read
I am aware that these values are far from the theoretically possible
USB 3.0 transfer speeds, but I ran the same benchmarks on
Windows 8 running natively on the same hardware and the results
were only slightly better (+5%).

Summary and conclusion

The latest ESXi 5.5 patch enables you to pass host-connected USB
3.0 devices through to VMs (Linux and Windows 8+, 2012+) where
you can achieve great near-native performance.

Besides from USB passthrough there is another way to make use of
host-connected USB 3.0 devices. Unfortunately you cannot format a
USB disk with VMFS to use it as a datastore, but William Lam has
described how to use large USB keys to automate VM deployments
using ESXi kickstart. This makes it possible to fully automate the
provisioning of ESXi and a set of virtual machines as part of the
initial deployment. Using a USB 3.0 device for this process will
speed it up significantly!

Update (2014-11-03):
William Lam pointed out that there is a better way to enable the
autoload on boot for the xhci module. Use this esxcli command
once instead of editing the local boot script:

William Lam @lamw
Folgen

 @VFrontDe @tinkererguy no need for hokey local.sh,
just use "esxcli system module set -e true -m xchi” &
can load using ESXCLI too
16:51 - 3 Nov 2014

 Antworten
 Retweeten
 Favorit
You never stop learning ;-) Thanks William! But ... there is a typo in
William's tweet (it's xhci, not xchi), and after Paul Braren and I
tested this it turned out that it doesn't really work as expected: You
can load the xhci module using	
esxcli	 system	 module	 load	 -‐m	
xhci	
instead of vmkload_mod xhci, but the command	
esxcli	 system	 module	 set	 -‐e	 true	 -‐m	
xhci	

will not lead to the module being automatically loaded at boot time.
So you still need my workaround with editing /etc/rc.local.d/local.sh.	

